Adaptive output feedback control based on neural networks: Application to flexible aircraft control
نویسندگان
چکیده
One of the major challenges in aeronautical flexible structures control is the uncertain or the non stationary feature of the systems. Transport aircrafts are of unceasingly growing size but are made from increasingly light materials so that their motion dynamics present some flexible low frequency modes coupled to rigid modes. For reasons that range from fuel transfer to random flying conditions, the parameters of these planes may be subject to significative variations during a flight. A single control law that would be robust to so large levels of uncertainties is likely to be limited in performance. For that reason, we follow in this work an adaptive control approach. Given an existing closed-loop system where a basic controller controls the rigid body modes, the problem of interest consists in designing an adaptive controller that could deal with the flexible modes of the system in such a way that the performance of the first controller is not deteriorated even in the presence of parameter variations. To this purpose, we follow a similar strategy as in Hovakimyan (2002) where a reference model adaptive control method has been proposed. The basic model of the rigid modes is regarded as a reference model and a neural network based learning algorithm is used to compensate online for the effects of unmodelled dynamics and parameter variations. We then successfully apply this control policy to the control of an Airbus aircraft. This is a very high dimensional dynamical model (about 200 states) whose direct control is obviously hard. However, by applying the aforementioned adaptive control technique to it, some promising simulation results can be achieved.
منابع مشابه
Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملadaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network
This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network, for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...
متن کاملAdaptive, Integrated Guidance and Control Design for Line-of-Sight Based Formation Flight
This paper presents an integrated guidance and control design for formation flight using a combination of adaptive output feedback and backstepping techniques without an underlying time-scale separation assumption. We formulate the problem as an adaptive output feedback control problem for a line-of-sight (LOS) based formation flight configuration of a leader and a follower aircraft. The design...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کامل